Learn how to Properly

 Design and Illustrate EIUL Policies© - The WPI

The Wealth Preservation Institute
378 River Run
St. Joseph, MI 49085

269-216-9978
www.thewpi.org

Introduction

- It's sad, but most life insurance agents are not familiar with EIUL at all.
- Captive agents (Mass, NY Life, etc.).
- Series 7 advisors who also have life licenses
- My least favorite-those who sell the IBC/BOY concept.
- Many who are, don't really understand how they work.
- And even few know how to properly illustrate them.
- In this webinar I will explain a little about how EIUL policies work and then I'll explain how to illustrate them properly.
- I'll also show you how illustrations are manipulated to make sales that should never happen.

What is EUIL

- It's a UL policy that has market linked returns (with caps).
- The typical caps on products range from 10-16\%.
- It's a UL policy that has no risk of loss due to stock market downturns.
- The floor on most is zero.
- Some products have lower high end caps but offer a 1-2\% guarantee in zero years.

Historical returns

- The goal with an EIUL is to give clients upside growth they can't get in a traditional UL or whole life policy without the risks associated with variable life products.
- I created a Special Rate of Return Report that has a 5-, 10- and 20-year back tested history on products using various caps and floors.
- If you have not downloaded this you should do so immediately by clicking here.

Continued

\% A	al Point	Point C	0\% floor)							
	$100^{\text {th }}$	$90^{\text {th }}$	$80^{\text {th }}$	$70^{\text {th }}$	$60^{\text {th }}$	$50^{\text {th }}$		Specified	Specified	Specified
	Percentile	Percentile	Percentile	Percentile	Percentile	Percentile	Average	Rate of 7\%	Rate of 8\%	Rate of 9\%
5 Year	2.85\%	4.34\%	5.20\%	6.11\%	7.01\%	7.61\%	7.25\%	$61^{\text {st }}$ Percentile	$44^{\text {th }}$ Percentile	$33{ }^{\text {rd }}$ Percentile
$\begin{gathered} 10 \\ \text { Year } \\ \hline \end{gathered}$	4.14\%	5.24\%	6.04\%	6.72\%	7.07\%	7.40\%	7.28\%	$63{ }^{\text {nd }}$ Percentile	$35^{\text {th }}$ Percentile	$10^{\text {th }}$ Percentile
$\begin{gathered} 20 \\ \text { Year } \end{gathered}$	7.12\%	7.37\%	7.43\%	7.60\%	7.69\%	7.73\%	7.70\%	$100^{\text {th }}$ Percentile	$9^{\text {th }}$ Percentile	$0^{\text {th }}$ Percentile
14\% Annual Point-To-Point Cap (0\% floor)										
	$100^{\text {th }}$	$90^{\text {th }}$	$80^{\text {th }}$	$70^{\text {th }}$	$60^{\text {th }}$	$50^{\text {th }}$		Specified	Specified	Specified
	Percentile	Percentile	Percentile	Percentile	Percentile	Percentile	Average	Rate of 7\%	Rate of 8\%	Rate of 9\%
5 Year	3.03\%	4.52\%	5.39\%	6.31\%	7.27\%	7.95\%	8.14\%	$63^{\text {rd }}$ Percentile	$50^{\text {th }}$ Percentile	$36^{\text {th }}$ Percentile
$\begin{gathered} 10 \\ \text { Year } \end{gathered}$	4.23\%	5.50\%	6.25\%	6.88\%	7.44\%	7.78\%	7.64\%	$68^{\text {th }}$ Percentile	$46^{\text {th }}$ Percentile	$42^{\text {nd }}$ Percentile
$\begin{gathered} 20 \\ \text { Year } \end{gathered}$	7.47\%	7.71\%	7.80\%	7.96\%	8.09\%	8.10\%	8.06\%	$100^{\text {th }}$ Percentile	$67^{\text {th }}$ Percentile	$0^{\text {th }}$ Percentile
12\% Annual Point-To-Point Cap (2\% floor)										
	$100^{\text {th }}$	$90^{\text {th }}$	$80^{\text {th }}$	$70^{\text {th }}$	$60^{\text {th }}$	$50^{\text {th }}$		Specified	Specified	Specified
	Percentile	Percentile	Percentile	Percentile	Percentile	Percentile	Average	Rate of 7\%	Rate of 8%	Rate of 9\%
5 Year	3.93\%	5.37\%	5.89\%	6.67\%	7.36\%	7.85\%	7.90\%	$68^{\text {th }}$ Percentile	$43^{\text {rd }}$ Percentile	31^{st} Percentile
$\begin{gathered} 10 \\ \text { Year } \end{gathered}$	5.08\%	5.99\%	6.60\%	7.02\%	7.42\%	7.62\%	7.55\%	$71^{\text {st }}$ Percentile	$37^{\text {th }}$ Percentile	$8^{\text {th }}$ Percentile
$\begin{gathered} 20 \\ \text { Year } \end{gathered}$	7.38\%	7.55\%	7.67\%	7.81\%	7.83\%	7.86\%	7.86\%	$100^{\text {th }}$ Percentile	$17^{\text {th }}$ Percentile	$0^{\text {th }}$ Percentile

Continued

Point-To-Point Cap (0\% floor) 140\% Crediting Method										
	$100^{\text {th }}$	$90^{\text {th }}$	$80^{\text {th }}$	$70^{\text {th }}$	$60^{\text {th }}$	$50^{\text {th }}$		Specified	Specified	Specified
	Percentile	Percentile	Percentile	Percentile	Percentile	Percentile	Average	Rate of 7\%	Rate of 8\%	Rate of 9\%
5 Year	2.82\%	4.64\%	5.69\%	6.79\%	7.04\%	8.08\%	7.94\%	69th Percentile	$51^{\text {st }}$ Percentile	$41^{\text {st }}$ Percentile
$\begin{gathered} 10 \\ \text { Year } \end{gathered}$	4.77\%	5.71\%	6.39\%	6.94\%	7.23\%	7.57\%	7.47\%	$69^{\text {th }}$ Percentile	$35^{\text {th }}$ Percentile	$13^{\text {th }}$ Percentile
$\begin{gathered} 20 \\ \text { Year } \end{gathered}$	7.30\%	7.68\%	7.75\%	7.80\%	7.84\%	7.92\%	7.99\%	$100^{\text {th }}$ Percentile	$42^{\text {nd }}$ Percentile	$9^{\text {th }}$ Percentile
			Years		Historical illustrated rate of 7.00\%					
		5-Years			Reached 71.78% of the time					
		10-Years			Reached 77.35\% of the time					
		20-Years			Reached 100\% of the time					
		Years								
					Historical illustrated rate of 7.50%					
		5-Years			Reached 65.57% of the time					
		10-Years			Reached 73.88\% of the time					
		20-Years			Reached 100\% of the time					
		Years								
					Historical illlustrated rate of 8.00%					
		5-Years			Reached 57.09% of the time					
		10-Years			Reached 69.45\% of the time					
		20-Years			Reached 97.75% of the time					
		Years								
					Historical illustrated rate of 8.50%					
		5-Years			Reached 49.59% of the time					6
		10-Years			Reached 64.55\% of the time					
		20-Years			Reached 79.83 of the time					

Continued

- You can see how the type of policy you recommend (cap, crediting type, etc.) can have a big impact on the ultimate outcome for the client.
- If you are selling EIUL and you don't know all the different policies and various crediting methods as well as the likelihood of return as outlined in my special EIUL rate of return report, you really have no business selling them.
- The best investment in the world is a life policy that allows you to pay a $\$ 100,000$ premium with a $\$ 101,000$ death benefit.
- Why? because money in a policy grows tax free and comes out tax free (policy loans).
- And with only $\$ 1,000$ worth of real insurance coverage in my example, the costs are virtually non-existent.
- This scenario used to be allowable and it caused congress to pass 7702.

7702 continued

- Everyone should know 7702.
- Section 7702 of the Deficit Reduction Act of 1984 (DEFRA) and Technical and Miscellaneous Revenue Act of 1988 (TAMRA) (which deals with the Modified Endowment Contracts (MEC) rules).
- In short, the MEC guidelines force/require policy owners to buy X amount of death benefit based on the premiums paid over a seven year period.
- This is a rolling 7-pay test within the policy.

Example

- Say you have a client who has $\$ 70,000$ in cash to pay premiums into a policy.
- Well, since money grows tax free and comes out tax free from a policy, it would make sense to put all 70 k in as a payment in year one right?
- Wrong.
- Why? because the 7-pay test will require a much higher initial death benefit.

Continued

- Example: 45 year old preferred.
- The initial DB required death benefit under the MEC test is $\$ 1,475,696$.
- And the software required additional premiums prior to the end of year seven to keep it from crashing (so no tax-free borrowing).
- With a 10k annual premium the initial DB was $\$ 320,000$ and you could borrow out $\$ 17,392$ for 20 years starting at age 65.
- A good rule of thumb is that if you can pay premiums over 7 -years do it. If not, 5 -years is about the minimum you want to use when stuffing cash in a policy.

Level or increasing DB

- When you run illustrations showing borrowing how do you run them?
- How does the IMO you work with run them?
- Most run them with a level DB.
- Why?
- As a general rule of thumb, level death benefit is code for MAXIMUM commission.
- Level DB starts with a higher DB and the "target" on the policy is based on the DB at issue.

Continued

- Because these policies are being sold for the cash value not the DB, level DB most of the time will not make sense.
- If the client needs more DB, throw in a term blend or sell a separate term policy.
- Level DB makes the agent more money but costs the client money.
- Sometimes with short pays or depending on the age of the client and type of policy, a level DB will be the best way to maximize income.
- How can you know which one is better?
- You run the illustration both ways.

Example

- 45 year old paying $\$ 30,000$ premium for 10 years, then borrowing from the policy in year 21 for 20 years (l'll use a 7.5% ROR).
- Outcome for level DB: Initial DB is $\$ 1,422,338$; amount client can borrow from policy each year = \$69,197; target premium = \$23,239.
- Outcome for increasing DB: Initial DB is \$659,785; amount client can borrow from policy $=\$ 84,452^{*}$; target premium = \$10,333.
- So, an ignorant greedy agent who sold a level DB to this client made $\$ 12,906$ more in commission but cost the client $\$ 15,225$ each year or $\$ 305,100$ over the borrowing phase.
- Was it the "right thing" for the agent to do? NO!

Magic illustrations

- The reason I decided to do this webinar is because I had an agent I work with who was all hot and bothered about going to "advanced" EIUL training put on by an IMO in VA.
- He was especially interested in something magical that can be done with the software in year 12 to make the illustration create more tax-free borrowing.
- First, there is not such thing as "advanced" EIUL training.
- If you read my book Retiring Without Risk and you attend this webinar, you will know all you need to about illustrating an EIUL.
- This will save you a trip to VA and from signing over all your life contracts to the IMO before attending training (which is bogus to me).

Magic continued

- The magic that the IMO in VA was alluding to was simply manually dropping the DB in the years after premiums are paid in a short pay situation.
- In my example, I had a client paying a \$30,000 premium ever year for 10 years but not borrowing until year 21.
- That means there are 10 years of no payments.
- If you don't manually change the software, it won't drop the death benefit in year 11, 12, etc.
- That means there will be more DB than is required and more expenses which equals less borrowing.

Continued

- In the classic maximum commission/level DB example, the initial DB was $\$ 1,422,338$.
- The DB stayed at this level until the client started borrowing from the policy in year 21 .
- If I manually go in an drop the DB in year 11 when premiums are no longer being paid, let's see what happens.
- The amount of borrowing goes from $\$ 69,197$ to \$73,251.
- Over the 20-year borrowing phase that's $\$ 4,054$ a year more or $\$ 81,080$ in total.

Continued

- The following is from an earlier slide where I compared a level DB illustration to an increasing one.
- Outcome for increasing DB: Initial DB is \$659,785; amount client can borrow from policy $=\$ 84,452^{*}$; target premium = \$10,333.
- See the *.
- I put it there because when you run an increasing DB illustration, if you don't manually drop the DB in the year after premiums are no longer paid in a short pay scenario, the DB will continue to run up and it will kill the amount that can be borrowed.
- So the *indicated that the $\$ 84,452$ amount already had the DB drop as part of the illustration.

Limits to the magic

- If dropping the DB works so great, why not drop it way down in the years after premiums are no longer being paid.
- Good idea right?
- When you don't pay premiums for years, MEC is not such a big issue.
- But Defra/Tefra can be.
- In layman's terms Defra/Tefra is a different corridor than the 7-pay test.
- You can be compliant with the 7-pay MEC test and violate the Defra/Tefra test.

Continued

- The software on most company's software will prevent you from making a policy a MEC or from violating the Defra/Tefra rules.
- If you try to drop the DB down too far when manually dropping it, the software will take premium out of the policy and/or prevent you from putting more premium in.
- So the magic illustration that can happen in year 10-12-14 or whatever is simply dropping the DB down to the Defra/Tefra limits after a short pay premium has been paid.

Crediting rates

- This seems to be a big point of contention out there.
- What crediting rate everyone run illustrations at?
- Unfortunately, most agents use "default" illustrations.
- What does that mean? It depends on the software used.
- For most, it means the maximum crediting rate allowed by the software and today's low lending rates on variable loan rates.

Continued

- The problem is that the likelihood of the policies performing at the crediting rates is slim to none.
- If you give out a default crediting illustration, make sure you give out another one with it that is more realistic.
- Does that mean a realistic one should be run at a 7% crediting rate?
- NO!
- It will depend on the product you are illustrating.

Continued

- Is it fair and an apples to apples comparison to run a comparison at 7% if the default rate of one company is 7.8% and another is 8.8% ?
- No. Therefore, I recommend you work off of percentages.
- If you think a conservative illustration is 15% off the default rate, you'd run the 7.8% one at 6.63% and the 8.8% at 7.48%.
- Some policies are designed for higher returns but have much higher expenses.
- By working off the same percentage to lower the default return, you are creating the fairest environment ${ }_{23}$ to have apples to apples comparisons.

Variable Loans

- One of the most abused illustration tools in the industry today are variable loan rates.
- Some policies have fixed or maximum lending rates 5\%-6\%.
- Some don't fix their rates and they float monthly with the Moody's Corp. Bond Index.
- Because variable loans allow for a potential positive arbitrage in the borrowing phase, having a low lending rate is key to maximizing the amount of money a client can borrow from a policy.

Continued

- To illustrate the abusive nature of variable loans, I'm going to go over an example of a Section 79 plan illustration.
- Section 79 plans are one of my least favorite plans pitched in the industry.
- Why?
- Because they are a concept that is sold with the least amount of disclosure

Section 79 illustration

- A Section 79 plan is one that agents pitch because it's the "deductible" purchase of life insurance.
- It sounds great, but the math does not support its use.
- Pitfalls with Section 79 plans
- Only works for owners of c-corps
- Employee benefit plan so EEs must be covered (even though most sales people lie to the EEs to get them to opt for 50k in term insurance)
- To get a 30-40\% deduction on the premium, the policy used by design has to be a piece of junk.
- One company doesn't have non-medical underwriting for groups under ten
- Bottom line to Section 79 plans is that clients would be much better off with a CIC and still better off funding a "good" EIUL after tax vs. a crummy policy in a partially tax deductible manner).

Example

- Ironically, I just had a consumer contact me after getting pitched a Section 79 plan.
- Female client age 45.
- The premium pitched was $\$ 68,127$ a year for five years.
- Illustrated rate was the default rate of 8.09% in years five and beyond (first five years the rate is lower to get a bigger deduction).
- Variable loan rate of 4%.
- Borrowing from policy $=\$ 90,820$ starting in years 21 for 20 yeas.

Problems

- The product has a 13% cap.
- From my EIUL special rate of return report, I know that the policy over the last 20 years would have had only a 9% chance of returning 8% annually).
- The loan rate of 4% was projected out $40+$ years.
- The loan rate in this policy is not fixed.
- The 50 year historical average on this lending rate is 7.7%.
- Anyone think this is a real world illustration that should be given to a client?

Adjusting the numbers

- The agent after I told the client what to ask for, reran the numbers using 7% loan rate but the same 8.09\% crediting rate.
- The borrowing dropped to \$66,121 a year.
- I ran the numbers myself (because I have the same software), but I ran them with a 7% crediting rate and a 7\% loan rate.
- Guess what the client could borrow?
- \$30,517

Summary of abuse

- The ignorant or crooked agent gave the client an illustration showing $\$ 90,820$. a year in borrowing using a 4% loan and an 8.09% crediting rate.
- When forced the agent gave a 7% loan 8.09% crediting rate illustration showing $\$ 66,121$.
- When I ran a "real world" illustration, the number came in at $\$ 30,517$.
- To simply state the numbers show the abuses that can take place when illustrating EIUL policies.

CVAT vs. GPT

- 99% of your illustrations should be GPT.
- CVAT is a trick some IMO/agents use to get a higher cash value in the early years.
- It is also used to enhance the 7-pay test so more premium can be paid earlier.
- If the goal is maximum borrowing in retirement, CVAT should not be used.
- It will require a higher DB later in the policy life and it will harm borrowing.

High cash value rider

- Sometimes a HCV rider will be needed.
- Not all policies have them.
- These riders are also typically per 1000 charge waiver riders.
- What most agents don't know is that if you drop the DB in the surrender period of the policy, the cost of insurance drops, but the other internal expenses in the policy NO NOT drop.
- If you think a client will have to drop the DB due to lack of funding, you'll want to offer a HCV rider.

Continued

- A HCV/per 1000 charge waiver rider costs money.
- In my 30k premium example, the client could borrow out $\$ 84,452$ a year for 20 -years.
- When I add in the HCV rider, the borrowing drops to $\$ 80,658$.
- That's $\$ 3,794$ a year or $\$ 75,880$ over 20 -years.
- When the client learns of this they will not want the rider, but you must offer it and document that you offered it.
- FYI, with the HCV rider the CV was $\$ 26,455$ and without it was $\$ 9,332$.

Retirement Life ${ }^{\text {TM }}$

- Communicating the value of EIUL to your clients with "full disclosure."
- RL is the only trademarked EIUL sales platform in the industry.
- It stands for the concept that no one policy can be the "best" policy for all clients.
- Most agents get used to one product and use it over and over again no matter who the client is.
- RL demands that an agent work with the client to figure out what policy is best.

RL continued

- There are four to five policies in the RL platform at any time.
- One designed for a robust market
- One designed for an average market
- One designed for a flat market
- One that is a good overall policy but has some special features that may be needed for certain clients.

Brochures

RETIREMENT LIFE"

Life insurance that pays you while living!

- Tax-free growth
- Tax-free withdrawals - No stock-market risk - Gains locked in annually - Good upside potential - self-completing upon early death

-Retirement Life ${ }^{\text {TM }}$ pays you very well when living. The 1 st chart below compares the a fter tax retirement funds received when a 45 -year old funds $\$ 15,000$ a year into mutual funds vs. Retirement Life ${ }^{\mathrm{TM}}$ until age

65 and then removes money from ages 66-85. (Mutual funds (brown) vs. Retirement Life ${ }^{\mathrm{TM}}$ (green))

-The 2nd chart below shows how much will go to the example client's heirs upon death when comparing the same. There is tremendous power and protection when using Retirement Life ${ }^{\mathrm{TM}}$ to grow wealth.

For more Information visit www.insertweb-site.address.com or e-mail
info@web-site.com

Brochures

RETIREMENT LIFE"

Life insurance that pays you while living

- Tax-free growth
- Tax-free withdrawals
- No stock-marketrisk
- Gains locked in annually
- Good upside potential
- Self-completing upon early death

Retirement Life ${ }^{\text {Tw }}$
Your protective wealth-building tool

Why should you e Retirement Life ${ }^{\text {TM }}$ as one of your wealth-building retirement tools?

Reason\#1: Safety

Over the past twenty-plus years, there have been many highs andlows in the stock market.
Retirement Life ${ }^{\text {TM }}$ is designed to protect insureds from market downtums and specifically, from th negative 46% return in $2000-2002$ andnegativ 59% return from the highs in 2007 to thelows in 2009.

In years when the measuring stock index eams a egative rate of retum, Retirement Liferm credits nogative rate of retum, Retirement Life with Credir years when the tock market goes negative.

Reason \#2:Locking in the Gains

Retirement Life ${ }^{\text {TM }}$ also allows insureds to lockin the gains in the market up to a specific cap that ange from $10 \%-15 \%$ annually.
This means that when your policy retums, for xample, 10% in any given year, those gains can VEVER be lost due to a stock-market downtum.

Understanding the Chart
The Chart on this page illustrates the power of sing Retirement Life ${ }^{\text {TM }}$ as a protective wealth using Reireme
building tool.

The example is a general companison of growing money in Retirement Life ${ }^{\text {TM }}$ vs. money in an E Trade account.

The example, in a simplistic manner, shows how Retirement Life ${ }^{T \mathrm{TM}}$ can be a protective wealthbuilding tool and also a very powerful one.
Both the Retirement Life ${ }^{\mathrm{TM}}$ and the E -Trade account start with a $\$ 100,000$ balance. When the market S\&P 500 stock index goes up 10%, cash in both Retiren go up 10%.

Inyeartwo, if the market S\&P 500 stock index goes down by 15%, the Retirement Life ${ }^{\text {TM }}$ policy retums ZERO and the E-Trade account goes down by 15%.
In year three, if the market $S \& P 500$ stock index In year three, if the market $S \& P 500$ stock index
goes up by 5%, that retum is captured in both the Retirement LifeTM policy and in the E-Trade Account.

After only three years, the account value in Retirement Life ${ }^{\mathrm{TM}}$ is $\underline{17.6 \%}$ higher than that of the E-Trade account. This is the power of growing wealth using Retirement Life ${ }^{\text {TM }}$
Retirement Life ${ }^{\text {TM }}$ gives youthe best of both worlds (upside growth and no downside nisk). It true that you have to give up some of the upside gon \rightarrow wide . see on mext pase over time the ginlockin see on ture of Retirement Life TM can still outperforn the no-cap E-Trade account that comes with high nisk when growing wealth with no protection.

History of the Market

Those who have had money in the market over the last 20 years really had a wake-up call with the stock-market crashes of $2000-2002$ and 2007 2008.

No one likes having their money go backward 46% and 59% over a two-year time span. Having money exposed to similar crashes can have a devastating effect on a person's ability to retire.

Did youknow that from 1989-2009 the average equity investor eamed only 3.49% when the S\&P 500 stock index eamedin excess of 8% ? (DALBAR Study 2012).
Why? Because the American investoris a professional at buyinghtgh and selling low professional at buyinghigh and selling low. The DALBAR Study inicates hat, in mes when panic sells.

With Retirement Life ${ }^{\text {TM }}$, panic selling is not an issue; and the policy protects you from your own worst instincts. With Retirement Lifer ${ }^{\text {TM }}$, the gains arelocked in annually; and there is no downside nisk when the market goes negative.

 expansa mbociatd with Retirement Lifirl.

Books

Roccy DeFrancesco J.D., cwpp,"' capp," cmp" Founder of The Wealth Preservation Institute

Give away books for free

*YorNNurifirar Home View the FREE Books DOWNLOAD YOUR FREE BOOKS NOW
 EDUCATE YOUR WAYTO A SECURE FINANCIAL FUTURE

IT'S TIME TO STOP BLINDING TAKING ADVICE FROM ADVISORS
If you are tired of taking advice from financial

Software

Marketing summary

- The marketing of EIUL as a wealth building tool is best told in a story.
- With the RL tools advisors have at their disposal, they have a tremendous "full disclosure" story to tell.
- And to boot, advisors I work with can use me as an independent third party to reinforce what they have already or will be telling clients.
- To learn more how you can use the RL sales tools, please e-mail roccy@strategicmp.net.

Summary

- Advisors owe a duty to their clients to make sure what they put forth is intellectually honest.
- Unfortunately, the majority of advisors selling EIUL don't understand the illustrations they are handing out.
- It is vital for any "good" advisor to fully understand how to properly illustrate EUIL policies and hopefully this webinar will help many reach that goal.

Questions?

- Questions?
- E-mail roccy@thewpi.org.

